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The work of J. A. Krommes and R. A. Smith on rigorous upper bounds for the 
turbulent transport of a passively advected scalar is extended in two directions: 
(1) For their "reference model," improved upper bounds are obtained by 
utilizing more sophisticated two-time constraints which include the effects of 
cross-correlations up to fourth order. Numerical solutions of the model 
stochastic differential equation are also obtained; they show that the new 
bounds compare quite favorab[y with the exact results, even at large Reynolds 
and Kubo numbers. (2) The theory is extended to take account of a finite 
spatial autocorrelation length L~. As a reasonably generic example, the problem 
of particle transport due to statistically specified stochastic magnetic fields in a 
collisionless turbulent plasma is revisited. A bound is obtained which reduces 
for small L c to the quasilinear limit and for large L c to the strong turbulence 
limit, and which provides a reasonable and rigorous interpolation for inter- 
mediate values of Lo. 

KEY WORDS: Passive advection; bounds; optimum theory; stochastic 
magnetic fields; transport; variational principles. 

1. I N T R O D U C T I O N  

In this paper we explore the derivation of rigorous yet useful upper bounds 
for steady-state transport due to random passive advection. 

It has long been recognized that the problem of obtaining an analytic 
theory of turbulence in fluids, plasmas, or similar nonlinear systems is 
extremely difficult. Usually, a statistical description is sought; in particular, 
one is often interested in the turbulent transport of various quantities such 
as particles or heat, which are described by certain two-point cross- 
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correlation functions. However, straightforward averaging procedures 
applied directly to the nonlinear equations of motion encounter 
immediately the closure problem--namely, low-order moments are driven 
by higher-order ones, and a useful expression for the higher-order moments 
in terms of lower-order ones is not readily apparent. Sophisticated closures 
such as the direct-interaction approximation (1'2~ provide such expressions, 
but the resulting equations are extremely complicated and are very difficult 
to solve either analytically or numerically. Furthermore, such closures mis- 
represent certain aspects of the physics; for example, they are largely 
ignorant of mechanisms of instability and coherent structures, if they exist. 

An alternative approach to the problem of turbulent transport is the 
so-called "optimum theory. ''(3'4) Although this method also uses statistical 
techniques, it is an approach quite different from the conventional closure- 
theoretical one. Instead of approximating the higher-order moments in 
terms of lower-order moments in order to close the moment hierarchy, the 
optimum theory employs a rigorous variational principle to address the 
question: What is the maximum attainable flux of some appropriate quan- 
tity, with given parameters and boundary conditions, subject to various 
constraints derived from the equations of motion. Although this question 
differs from the one usually addressed by conventional statistical closures, 
which try to predict the flux as accurately as possible, it is perfectly 
legitimate, since physically the knowledge of an upper bound certainly 
helps one to estimate the true answer, even if crudely. Furthermore, if one 
can exhibit one combination of constraints which yields a finite bound, it is 
guaranteed that adding an additional constraint will lead to a new bound 
which will be no worse than the old one. Thus, one can in principle 
envision a sequence of bounds, obtained by adding more and more con- 
straints, which converges to the true answer. In practice, of course, only a 
few constraints will be tractable. The principal goal of the present work, as 
was true also of ref. 4, is to obtain experience with various constraints 
applied to simple yet nontrivial situations in order to better understand the 
utility of the method. 

The original motivation for the optimum theory lay in Malkus' 
speculation (5~ that the physical state achieved in experiments of steady-state 
thermal convection corresponds to the mathematical solution which 
maximizes the heat flux. Although this turned out to be true only in certain 
limiting cases, it motivated Howard (6) to ask a different, although 
mathematically rigorous, question: Instead of attempting to characterize or 
ascertain the true (physical) flux, he asked what the maximum possible flux 
would be, compatible with one or more constraints derived rigorously from 
the equations of motion. He showed how to formulate this question as a 
rigorous variational principle. Busse called the procedure the "optimum 
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theory" and reviewed/3) developments and applications of the method 
through 1978. Smith introduced the optimum theory to the plasma physics 
community with his discussion (7) of transport due to collisional drift waves. 
All those calculations were concerned with self-consistent problems, where 
all dependent variables are related to each other. 

Krommes and Smith pointed o u t  (4) that problems of passive advec- 
tion, where the advecting velocity field is statistically specified instead of 
self-consistently determined, are also of interest. Not only do passive 
problems arise in various physical applications, an equally important 
motivation for studying them is that their reduced mathematical com- 
plexity enables one to exhibit and understand certain general charac- 
teristics of the optimum theory much more simply. Krommes and Smith 
considered in detail a pedagogical "reference model" for which an exact 
solution is available. They also discussed general features of the generic 
optimum problem of passive advection under the so-called "basic" 
constraint. However, they noted that passive problems involve one new 
qualitative feature--namely, a new dimensionless variable, the Kubo 
number, (8'2) must be introduced in order to describe the statistical nature 
of the temporal and spatial variation of the specified advecting field. 
Krommes and Smith emphasized that the effects of finite autocorrelation 
time and length described by the Kubo number were not captured by the 
basic constraint which had been used exclusively in the self-consistent 
problems, and they showed how to incorporate these effects into the 
formalism. 

Although the detailed mathematical featt/res of their work are 
described in Section 2, it is useful to give a few introductory remarks here. 
They considered the situation in which a scalar field T is passively advected 
by a random velocity field u, dependent only on time, in the presence of 
dissipation and in a bounded region. Thus, the model equation is of 
diffusion type with an advection term which is stochastically, not 
dynamically, nonlinear.(l~ The (time-independent) boundary conditions for 
the scalar field were taken to be statistically sharp: T= 1 at x = 0 and T= 0 
at x = 1. Physically, this makes the walls infinite sources or sinks, which is 
sometimes appropriate in physical applications. The turbulence was 
assumed to be statistically stationary in time. They then proceeded as 
follows: First, they obtained the "basic" constraint by constructing a 
quadratic functional of 6T(x, t) from the global balance of scalar variance 
("energy") (6TZ(x, t))/2. This is a standard way of finding an "action" or 
Lagrangian. Then, they pointed out that this constraint does not involve 
the Kubo number, since it is constructed from moments at one point in 
space and time, so correlation lengths or times (two-point quantities) can- 
not enter. Hence the basic bound, although rigorous, behaves as though 
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the Kubo number were infinite. In order to incorporate the effects of finite 
correlations, they constructed a two-time constraint by multiplying the 
equation for the fluctuations &T(x, t) by &u(t') at a different time, averaging 
over the ensemble, and integrating over x. They showed that the solution 
of the resulting Euler-Lagrange equation not only reduces as expected to 
the result of the basic bound in the limit K ~  oe of strong turbulence, it 
also reproduces correctly the exact, quasilinear, result as K ~ 0. In fact, for 
the reference model the new bound scales correctly in all regimes of 
Reynolds number and Kubo number. 

For the reference model, the basic bound (or the two-time bound for 
K =  oe) is no more than about 25 % larger than the true answer in the 
worst case of infinite Reynolds number (very strong turbulence), and can 
be obtained quite simply. The direct-interaction approximation predicts a 
closer result (4) (lower than the exact answer) but requires substantial 
computational labor to obtain. Thus, an advantage of the optimum theory 
over conventional closures can be relatively simple algebra or numerical 
computations. The advantage is not so clear when two-time constraints are 
considered, although the rigor of the optimum theory is very appealing. 

Of course, there is an infinite number of two-point constraints. 
Although the constraint of Krommes and Smith may well be the simplest, 
it is certainly not unique. One of our purposes in this paper is to explore 
the possibility of improving the upper bounds by adding more constraints. 
This can be done by including the effects of triplet and/or higher-order 
cross-correlations in the formulation. Indeed, we find that the upper 
bounds can be improved, although only after lengthy algebra. The most 
successful constraint we have found involves fourth-order correlations. 

Although Krommes and Smith were able to obtain simply the exact 
result for the flux predicted by the reference model in the limit K ~  oe 
(because that limit involves no time dependence), they did not attempt to 
solve the model for finite K. In the present work we accomplish this 
solution by statistically averaging an ensemble of numerical solutions of the 
stochastic differential equation. This allows us to demonstrate that the 
improved bounds compare quite favorably with the true solution. 

One flaw of the present calculations based on the reference model is 
that since there the advecting velocity field depends only on time--i.e., the 
correlation length is infinite--various analytic shortcuts can be taken and 
one worries that the manipulations may not generalize readily to the 
physically interesting case of finite correlation lengths. Thus, in the second 
part of this paper we generalize the work of Krommes and Smith by 
studying a system where the effects of the finite correlation lengths are 
important. In particular, we revisit the problem of particle transport in a 
turbulent plasma due to stochastic magnetic fields. This problem has been 



Transport due to Passive Advection 1107 

treated extensively in the literature (see, for example, refs. 9-11 ), since field 
line stochasticity has been advanced ~9) as a likely mechanism to partly 
explain the anomalous transport of electrons and heat in a turbulent, 
magnetically confined fusion plasma. Most of the work so far can be 
classified as closure-theoretical approximations to the passive situation, ~ 
although recently there have been several attempts to study the self- 
consistent problem. ~12 14~ Krommes and Smith did consider this problem as 
an application of the optimum theory; however, they only considered the 
basic constraint, which behaves as though the correlation time and lengths 
are infinite. We shall show that it is, in fact, possible to generalize their 
calculation to include both finite correlation time and, in particular, finite 
correlation lengths. 

The rest of this paper is organized as follows. In Section 2 we show 
how to improve the two-time result of Krommes and Smith for the 
reference model by taking into account higher-order cross-correlations. 
Two ways of improvement are pursued. First, while Krommes and Smith 
annihilate a triplet cross-correlation by integrating the two-time constraint 
over x, we simply keep that term by not integrating, which leads us to 
introduce a space- as well as time-dependent Lagrange multiplier. The 
resulting bound is found to be improved slightly for finite Kubo number, 
but not improved in the limiting cases of either zero or infinite Kubo 
number. The reason is that in the case of vanishing Kubo number both 
two-time bounds are exact (quasilinear), while in the case of infinite Kubo 
number both two-time constraints reduce to the basic, one-time constraint 
and are thus redundant. Second, we show how to improve the bounds in 
the cases of infinite as well as finite Kubo number by adding to the con- 
straints of Krommes and Smith another two-time constraint constructed 
from a fourth-order cross-correlation. The application to the stochastic 
field problem is described in Section 3. We discuss our results in Section 4. 
In Appendix A we describe our numerical solutions of the generalized 
reference model. In Appendix B we give a brief discussion of functional 
derivatives on bounded spatial domains. Finally, in Appendix C we give 
the detailed derivation of an optimum equation for (collisionless) transport 
due to stochastic magnetic fields. 

2. I M P R O V E D  U P P E R  B O U N D S  FOR T H E  R E F E R E N C E  M O D E L  
OF K R O M M E S  A N D  S M I T H  

We begin this section by defining the problem which Krommes and 
Smith called the reference model. In this pedagogical problem, a scalar field 
T is passively advected by a centered, time-stationary, Gaussian velocity 
field u(t) whose statistics are specified explicitly in a one-dimensional, 
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bounded region, in the presence of (classical) dissipation. The imposed 
boundary conditions are statistically sharp: T =  1 at x = 0  and T = 0  at 
x = l ;  these are sometimes called "rigid" because the fluctuation 6T 
vanishes at the boundaries. This model serves as a tractable prototype for a 
wide variety of advection problems. The purpose of studying the very sim- 
ple reference model is that in certain limits an exact solution is available (4) 
to which the results of the variational calculation can be compared; also, 
while in more complicated, physical situations the Euler-Lagrange 
equation must be solved numerically, for the reference model much of the 
algebra can be done analytically. 

For purposes of clarity and comparison, we shall follow closely the 
notations of Krommes and Smith. Then the evolution equation of T is 

_~  •T 02T 
+ . ( t )  7x - R - '  ~ = 0  (1) 

where R is the Reynolds number and all the variables have been made 
dimensionless: u is normalized to ff - (b/Z) 1/2, X is normalized to the width 
L of the region and thus is defined on the interval [0, 1 ], and the time t is 
normalized to the eddy turnover time rL - L/~. As Krommes and Smith 
discussed, there are three fundamental time scales: in addition to the eddy 
turnover time z/~ (=  1 in dimensionless units), there is the hydrodynamic 
time rh = R and the autocorrelation time zar = K. While the first two time 
scales are obtained by balancing the first term of Eq. (1) with the second 
and third terms, respectively, the autocorrelation time enters via the 
statistics of u. By means of dimensional analysis and random walk 
arguments, Krommes and Smith obtained several possible scalings for the 
dimensionless flux 7, namely classical (~,o~R-1),  quasilinear (~q~K), 
hydrodynamic (?'h ~ R), and strong turbulence (Ys ~ 1). 

In the limit K =  0% time dependence can be ignored in Eq. (1) and 
one obtains a second-order ordinary differential equation which can be 
solved analytically ~4) for each realization of the Gaussian random number 
u. The general time-dependent case is more difficult. Although some 
progress can be made by employing Fourier transforms, we have failed to 
find an analytic representation of the solution which is simple enough to be 
averaged explicitly. However, it is possible to solve the stochastic differen- 
tial equation (1) numerically. This work is described in Appendix A. 

Now we proceed with a description of the bounding method. If we 
decompose T into the ensemble average (T ) ( x )  and the fluctuation 
aT(x, t), then average Eq. (1) over the ensemble of u, we obtain a (local) 
balance relating flux and dissipation, 

d (6u a T ) -  R 1 d2 
~xx ~ ( T )  = 0 (2) 



Transport due to Passive Advection 1109 

where we assumed statistical stationarity. (Since ( u ) = 0 ,  it is more 
suggestive and appropriate to write fiu instead of u.) Obviously, the con- 
tinuity equation (2) is the first member of a hierarchy of moment equations 
which relate lower-order moments to higher-order moments and exhibit 
the closure problem. It can be rewritten more usefully by integrating it once 
over x. Upon using the boundary conditions, we obtain the following 
simpler relation between the flux F(x, 0) and the (unknown) profile 
<T)(x): 

d 
( T ) ( x )  = R[r (x ,  0) -/~(0) - R-1]  (3) 

where 

F(x,  ~) - < f i u ( t - O f i T ( x ,  t ) )  

and F is the flux averaged over x: 

F ( , )  - dx F(x,  ~) 

By subtracting Eq. (2) from Eq. (1) we find an exact equation for the 
fluctuations: 

fiT(x, t) + fiu(t) d 0 ~t ~ ( T ) ( x )  + fiu(t) ~x fiT(x, t) 

1 02 
r ( x ,  o ) -  R ~x ~ fiT(x, t) = 0 (4) 

To obtain a variational functional, we begin by multiplying Eq. (4) by 
fiT(x, t) (at the same time and space point) and ensemble averaging. We 
then obtain the "energy" balance equation 

where "energy" is used generically for the scalar variance (fiT2/2). The 
interpretations of the three terms in Eq. (5) as production, transfer, and 
dissipation, respectively, have been discussed by Krommes and Smith. Of 
course, Eq. (5), which relates the second-order moments to the third-order 
moment, is also part of a moment hierarchy. However, rather than 
attempting to close the hierarchy by approximating the triplet correlation, 
we proceed rigorously and annihilate it by integrating Eq. (5) over x and 
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using the rigid boundary conditions on 6T. We obtain the equal-time 
constraint 

F ( O ) = R ~ F 2 + R - ~  \ ~x ] / (6) 

where 

dr(x)  - r(x, o ) -  F(o) 

bar means the integration over x, Eq. (3) was used to eliminate the mean 
gradient, and the last term was obtained after integration by parts. 
Krommes and Smith called Eq. (6) the "basic" constraint. 

It is easy to show that knowledge of F(0) determines the total flux of 
heat through the system. (41 Thus, one is led to the variational principle: 
Maximize F(O) under the constraint (6). This can be implemented most 
straightforwardly by introducing a Lagrange multiplier (for which we must 
solve self-consistently). Although this is not difficult for the reference 
model, it may be somewhat tedious in practice (especially in the 
generalizations to self-consistent situations). To attempt to circumvent this 
annoyance, Krommes and Smith followed Howard (6) and Busse (31 in 
formulating an alternative, minimum, principle in which, under the basic 
constraint, a Lagrange multiplier does not appear explicitly. (It vanishes 
for the basic constraint.) Thus, following Krommes and Smith, it turns out 
that the basic variational principle is to 

R 2 ~ r  2 + ((0 6T/ax) ~) 
minimize ~ = ?  F(0) 2 subject to F(0)=?  (7) 

where N ~= R at the stationary point. The resulting function ?(R) is the 
desired upper (basic) bound. The Euler-Lagrange equation which follows 
from Eq. (7) was solved in ref. 4 [see Eq. (2.40)]. This result, independent 
of the Kubo number, is shown in Fig. 1 as the chain-dashed curves Vb for 
the three Reynolds numbers 5, 10, and 50. The remaining information in 
this figure will be discussed below. 

Although the basic bound is quite rigorous, it is seriously flawed in 
general since it does not involve the Kubo number; due to the assumption 
of stationarity, the one-point constraint (6) involves no time dependence 
and cannot recognize two-time correlations. In other words, the basic 
bound behaves as though the Kubo number were infinite. 

Clearly, to include the Kubo number in the expression of the upper 
bounds, one must consider two-time constraints, as was discussed by 
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Fig. 1. Various upper bounds on r for the reference model as a function of Kubo number K, 
for Reynolds numbers R = 5, 10, and 50. See the text for definitions of the various curves. The 
solid circles with error bars are the "exact" results, from numerical integration of many 
realizations. The arrows indicate the exact results for K = or. 

Krommes and Smith. They constructed a particular two-time constraint 
Ct(x, ~) by multiplying Eq. (4) by u(t') and ensemble averaging to obtain 

O = C , ( x , z ) -  \8~ ~ F(x ,z )+U(z)  ( T } +  Y( x , z )  (8) 

where T is the time difference variable r - t - t ' ,  U is the specified auto- 
correlation function of u, U(~) - ((Su(t) 6u(t')) = e x p ( - M / K ) ;  and ~-- 
is a triplet cross-correlation function, J ( x , z ) -  (6u(t)(ST(x, t)6u(t')). 
Because this constraint is somewhat complicated, Krommes and Smith 
proceeded to obtain a reduced constraint Ct = 0 by integrating over x to 
annihilate the triplet cross-correlation. They then solved the resulting 
Euler-Lagrange equation and showed that the bound behaves reasonably 
for small Kubo number, i.e., proportional to K. (In fact, for K ~ 0  the 
bound reduces to the exact, quasilinear, result.) This bound is plotted in 
Fig. 1 as the solid curves 7Ks. For finite K, the new bound is smaller than 
the basic bound, which is expected since more constraints were applied. 
(However, for K--* oo the two-time constraint asymptotes to the basic one; 
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thus, in that limit the new constraint is redundant and the bound is not 
improved.) 

In fact, it is not necessary to annihilate the triplet cross-correlation in 
Eq. (8). A richer theory and a presumably better bound on the flux can be 
obtained by using the full Eq. (8) as the constraint, and this is what we 
shall explore here. Thus, we minimize the functional 

R 2 3 F  2 + ((~3 6T/c3x) 2 ) 
N = 7  r (o )2  

+ & dX)~o(X , z )C~(x , z )+  d x ; ~ q ( x ) ( 6 T ) ( x ) + ) . 2 [ P ( O ) - y ]  

(9) 

where we take into account the constraints Ct = 0, ( S T ) =  0, and i f (0 )=  7 
via the Lagrange multipliers )4 o, )q, and 2> In the calculation of Krommes 
and Smith, 21 and 22 were omitted, as we will discuss in a moment.  First, 
however, let us argue that the constraint Ct = 0 will, in fact, lead to an 
improvement in the bound, rather than to just a different bound. The issue 
is whether the new constraint consists of the old constraint C t = 0 plus an 
additional constraint-- in which case the new bound cannot be worse than 
the old one - -o r  whether the new constraint is simply different--in which 
case there is no theorem about the relation of the new bound to the old 
one. To show that we are, in fact, adding a further constraint to the one of 
Krommes and Smith, we decompose )~o as 

&(x, T) = ,~o(Z) + J,to(X, r) 

where 20 is the spatially averaged '~o and A2 o is the deviation from ~o. 
Using this, it is simple to rewrite the two-time constraint part of .r as 

& dx 2o(X, r) C,(x, r) 

= dT/~o(T) Ct (T  ) --{- dT d x  z~2.o(X , T) Ct(x  , T) 
-~3 -oo 

Clearly the first term on the right-hand side is nothing but the two-time- 
constraint part  of the functional of Krommes and Smith. Since the A2 o part 
represents another constraint additional to the old constraint of Krommes 
and Smith, we expect an improved bound. To ensure this, however, we 
must enforce the appropriate boundary conditions on A2o. These can be 
determined by arguing that we should be able to recover the previous 
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bound of Krommes and Smith as we let A2o vanish. Thus, in particular, we 
must require that A2o vanishes on the boundaries: 

A2o(0, r ) =  A2o(1, v)= 0 (10)  

In the present calculation, we must explicitly enforce the constraint 
<fT) = 0, for the following reason. Since Ct has a cubic nonlinearity, the 
resulting Euler-Lagrange equation is quadratically nonlinear. Hence, in 
general the ensemble average of the Euler-Lagrange equation does not 
automatically vanish. (Krommes and Smith annihilated the cubic term, so 
their Euler-Lagrange equation was linear and the constraint (fiT) = 0 was 
automatic; for them, 21 = 0.) 

The term in 22 is required to ensure that the Euler-Lagrange equation 
satisfies the one-time constraint (6). This is not satisfied automatically since 
the two-time constraint Ct involves a constant term [when the gradient of 
the profile is eliminated via Eq. (3)], and this constant disappears under 
the functional derivative required to generate the Euler-Lagrange equation. 
This is a property of constraints such as Ct; for the basic bound 22 = 0 
because the basic functional is homogeneous of degree 0 in fT. This is why 
Busse, Krommes and Smith, and others did not bother to introduce 22 
explicitly in their calculations of the basic bound. The situation is different 
in the two-time calculation of Krommes and Smith, where they should 
have included this constraint. Fortunately, their final result stands. In their 
calculaton So was directly related to dF/&. When one includes 22, it can be 
shown that 22 combines with S 0 to give dF/&. Thus, the new 20 differs 
from that of Krommes and Smith by a constant in space; however, in terms 
of the new So, the equations for the bounding flux are the same in both 
calculations. 

Upon taking the functional derivative of Eq. (9) with respect to 6T 
and using Eq. (3), we are led to the Euler-Lagrange equation 

~x26T(x, t l+fu(t) <T>--~t d~Ao(x, ~)6u(t-e) 

d~Ao(x ,~ ) fu ( t -O+R d~Ao(x,~)U(~)fu(t) 
- -  o o  - -  cm 

- R  f df d~- Ao(Y, f) U(f) 6u(t) 

j~  df Ao(x, ~) c~u(t - f) 6u(t) + AI(X) + A2 3u(t) 
O X  - - o o  

(11) 

822/'53/5-6-7 
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where 

This result omits various Dirac delta functions concentrated at the boun- 
daries, because we have chosen to define 6T(x, t) only on the open interval 
(0, 1). For more discussion on this point, see Appendix B. 

It is useful to proceed by eliminating the subsidiary multipliers A1 and 
A2 in terms of A o. This can be done by requiring that the associated 
constraints be satisfied. First, by ensemble averaging Eq. (11), we can 
determine A 1 in terms of Ao: 

A~(x) =-~x d~ Ao(x, ~) U(~) 
- - o 0  

(Note that A 1 vanishes when A 0 is independent of x, which is the case for 
the reduced constraint Ct of Krommes and Smith.) Similarly, to find A 2 in 
terms of Ao we multiply Eq. (11) by fiT(x, t) (again, at equal space and 
time points), ensemble average, and integrate over x. Upon using the one- 
time constraint, we obtain 

A2 = _ ~ - 1  dg d2 Ao(2, ~) U(~) (12) 
- - G O  

(Note that A 2 does not vanish even when A o is independent of x.) Upon 
inserting A 1 and A 2 into Eq. ( i l l  one can write the Euler-Lagrange 
equation much more symmetrically as 

c3 z d 0 r~  
O= -~x2fT(x, t)+fu(t)-~x <T>--~ j dgAo(x, e) f u ( t - e )  

- -  o 0  

- R  -1 ~2 f~ _ ~ dg Ao(x, ~) fu(t - g) 

0 eGO 
ax J d~ Ao(X, O [ f u ( t  - ~) fu( t )  - U(,-c) ] 

o O  

1] f~ a~ ooF a~ Ao(~, ~) v(~) f.(t) (13) + 
- - c o  

The remaining task is to find the undetermined Lagrange multiplier Ao 
self-consistently and then solve for the flux. To do this, we follow the 
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general procedure of Krommes and Smith, who pointed out that it is 
unnecessary to actually solve for 6T itself. Rather, one can directly con- 
struct an equation for F by multiplying the Euler-Lagrange equation by 
6u(t') and ensemble averaging, using the Gaussian property of 5u(t). We 
obtain 

-1 82 F(x, r)+RU(z)[F(x,O)-f ' (O)-R -~] O = - R  7 x  ~ 

- ( ~ z +  R l-~x2) O(x, r)+ RU(z)[tP(x, O)-~(O)-(R7)- l  ~(O)] 

where ~ is the convolution of A o and U: 

f 
oO 

O(x, z) - di Ao(x, ~ ) U(z-- i) 
- - o 0  

Because the boundary conditions (10) imply 

where 

JO(o, ~) = JO(1, ~) = o 

(14) 

(15) 

~r z) -" r ~) - ~(z) 

it is more convenient to express Eq. (14) in terms of A@ rather than ~ itself. 
To do this, we integrate Eq. (14) and Ct over x and combine the results to 
obtain 

~ ( ~ ) + 7 - 1 ~ ( 0 )  u(~)= - F(~)-R -1J0'(0)]~ U(~) 

We may now use this result to eliminate ~ in favor of A~ in Eq. (14); we 
finally obtain 

82 
0 =  r ( r ) - R  1 r(x,~)+RU(r)[r(x,O)_F(O)_R-~] 

( a  a 2 ) - • + R  1-~x 2 AO(x,z)+RU(~)AO(x,O)-2R IAO'(O) U(r ) (16) 

In obtaining the last term of Eq. (16), we used the symmetries 

r(x ,~)=r(1-x ,z) ,  JO(x,~)=J~(1-x,~) 
to deduce 

A~'(0) = - A ~ ' ( 1 )  
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Note that for 3 0 = 0 ,  Eq. (16) reduces properly to Eq. (5.17) of Krommes 
and Smith. 

To obtain a closed set for F and 0, we need one more equation. This 
may be found by multiplying Eq. (13) by (Su(t) 6 u ( t - r )  and ensemble 
averaging. We obtain 

_ R _  1 0 2 
-~x~-(x,~)--g-s (17) 

where we used 

(,~u(t) ,~u(t- ~) ,~u(t- ~) ,~u(t) ) - u(r) u(e)=  u ( r -  ~) + u(r) u(f) 

After we integrate once over x, we can rewrite Eq. (17) in a form 
appropriate for use in the two-time constraint (8): 

ax y-(x, ~) = -R[~O(x,  r) + d0(x, 0) U(r)3 (t8) 

Equations (8), (16), and (18) form a closed set of equations for F, A0, 
and 3-. 

If we take 

U(r) = e x p ( - [ r I / K )  

for the autocorrelation function, we can simplify the problem by invoking 
separation of variables, 

F(x, ~) =r(x) U(r), 30(x, r) = 3~U(x) U(~) (19) 

In this case the Lagrange multiplier behaves in time as 

AAo(x, ~) = A T(x) 6(r) 

as can be determined by solving Eq. (15) by Fourier transforming in time. 
Using the expression (18) for the triplet cross-correlation together with 
Eqs. (19), we can reduce the constraint (8) to 

d 2 
- R  2 - ~ r + E I + ( K R )  ~]F- (7+R ~ ) - 2 A T = 0  

dx ~ 
(20) 

To get the above we take U(z)= exp(z/K), since because of the diffusion 
operator the system evolves in the forward direction in time and we are 
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interested in the flux at r = 0 which evolves from the state at z = - ~ .  In 
the same manner we reduce Eq. (16) to 

0 =  - R  -2 d2 /-q_/w_ 7[-1 - (KR) -1 q- (R~') -1 ] 

d 2 
-R-2--~x2AT+[1-(KR ) 1]A~-2R-2AT'(O) (21) 

In the case when K ~  o% one can eliminate the first two terms on the 
right-hand side of Eq. (21), by using Eq. (20), to arrive at an equation 
which involves only AT. One can then argue that A T = 0 ,  since the 
equation is homogeneous in A7 t and A~u= 0 also satisfies the boundary 
conditions. Since the triplet cross-correlation also vanishes, we reproduce 
the basic result of Krommes and Smith in this case. The reason for this is 
that when K ~ o o ,  the two-time constraint reduces to the one-time 
constraint: The time-derivative term of Eq. (8) vanishes and the solution 
6T following the variational principle (7) satisfies Eq. (8). 

The case of finite K is more involved. After straightforward algebra, 
one can combine Eqs. (20) and (21) to obtain 

R _  4 d 4 d 2 
F -  4R-2 ~ F +  [3 - (KR)-2] F 

={3,/[1-(KR)-~]+R-I[3-(KR) ~ ] } + 4 R  2AT' (0 )  (22) 

with boundary conditions 

F(x)l~=o,~ = 0  

R-2r"(X)~x=O,, = - ( ~ + R  -1) 

[The boundary conditions on F" follow by applying Eq. (10) to Eq. (20).] 
We can solve the above analytically: first, solve for F as a function of 7 and 
AT'(0) ;  next, use this result in Eq. (20) to obtain AT'(0);  finally, integrate 
F over x in order to obtain an equation for ~. Since the final expression for 
7 is long and messy, we do not write it here. However, numerical display of 
the analytic solution is straightforward and is shown in Fig. 1 as the 
dashed curves 7,. Both this and the two-time bound of Krommes and 
Smith behave properly for the important limiting cases: y ~ K  in the 
quasilinear regime; 7 = O(1) in the strong turbulence regime. It is evident 
that our present calculations have improved the bound, although 
insignificantly. That YES and 7t should be qualitatively similar is not 
surprising, since the two two-time bounds are equal at the two endpoints 
K = 0 and K = oo. 
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The only way to improve the situation at K =  oo is to consider a 
constraint which embraces more equal-time effects, and it is natural to 
consider fourth-order effects. A new constraint for that purpose is obtained 
by multiplying Eq. (4) by 6u2(t ') and ensemble averaging: 

Cf (x , r )=  - ~ - R  1 ~  (6u2(t,)6T(x,t)) 

d F(x, O ) ( 6 u 2 ( t  ') 3u(t) 6T(x, t)) + 0_~_ 
8x 

= 0  (23) 

The corresponding variational principle is 

R 2 AF 2 + ((86T/3x) 2) f~ 
minimize ~ = 7 /~(0)2 t- j_ ~ dr 2o(r) Ct(r) 

+ dr dx ~l(x, r) Cf(x, r) + dx 22(x) ( fT)  
c o  

+ i3[F(0) - 7] (24) 

Notice that we are using the constraint Ct; we are not including the triplet 
correlational effect in the two-time constraint equation (8), which we 
considered earlier. Some constraint such as Ct = 0 is required in order to 
ensure that the Kubo number scaling in the limit K ~ 0  is captured 
correctly. In the absence of Ct, the resulting bound does not reduce to 
quasilinear theory as K ~  0. 

From Eq. (24), the Euler-Lagrange equation follows as 

82 
0 =  -R-l-~-ix2 6T(x, t) + 6u(t) js ( T) 

8 1 +~U(/) d~fll(x,f)[bu2(t-f)-l] (25) 
- ~ + R  8x ~ 7x 

where A2 and A3 are determined in terms of Ao and A1 as before, 

1 82 
Az= R-  -~ix: f o d~ dl(x, ~) 

f 
c o  
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The boundary conditions for A1 are .d~ = 0 at x = 0 and x = 1. Since flu is 
independent of fiT, higher-order cross-correlations can be expressed in 
terms of the flux F by multiplying the Euler-Lagrange equation by the 
corresponding number of flu's, 

1 02 
0=--R- -~x~r(x,r)+RU(z)[r(x,O)--P(O)--R 1] 

- f  d~Ao(e) Nv(,-~)+ot - '  v(e) v(z) 
- - o o  

~78 .f0000_ d~ Al(x, ~) U('~) U(v -  i)  (26) - 2  

O = - R  1 82 ( flu2(t ') fiT(x, t) ) 

- - ~ + R - ~ x  z j_00de .d t ( x , e ) ( f lu2 ( t ' ) f l u2 ( t - f ) )  (27) 

0 = - R  -1 82 ~x 2 ( flu2(t ') flu(t') fiT(x, t) ) 

+ R (  flu2(t ') flu(t") flu(t) ) [F(x ,  O) - F(O) - R -1 ] 

- f  de do(e) -~-t ( f lu2( t ' ) f lu( t" ) f lu( t -~))  
- - o 0  

+ 7-~U(g)(flu2(t ') flu(t") 6u( t ) ) ]  

- d~Adx, ~) 
00 

x [(flu2(t ') flu(t") flu(t) flu2(t - ~)) - (flu2(t ') flu(t") flu(t))] (28) 

First of all, by integrating Eq. (26) over x and using the constraint Ct =0, 
we find that -do is the same as that of Krommes and Smith. Also, assuming 
the temporal behavior of the Lagrange multipliers to be the Dirac delta 
function and separating variables, we end up with two equations, (26) and 
(23), where we have eliminated the triplet and fourth-order cross- 
correlations in favor of the flux F and the Lagrange multiplier -dl by using 
Eqs. (27) and (28). An easy way to solve these coupled equations is to first 
solve Eq. (26) for F, then to put that expression into Eq. (23) to obtain a 
sixth-order, constant-coefficient ordinary differential equation for F, where 
the extra orders are due to the fact that we differentiate Eqs. (26) and (23) 
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to obtain the final differential equation. The general solution of this 
equation has six constants. In order to determine these constants uniquely 
we solve for 41, the triplet cross-correlation, and the fourth-order cross- 
correlation in terms of the constants. Then we use the boundary conditions 
and compare the coefficients of x 2, x, and the constant terms of Eq. (23). 

The final result is plotted in Fig. 1 as the dotted curves 7f, and is seen 
to be significantly better than the previous ones. Also shown by the solid 
circles with error bars are representative points from the "exact" numerical 
solution of Eq. (1), described in Appendix A, for R = 10. (It is an accident 
that these points happen to lie close to the bound 7KS for R = 5.) The exact 
results for K =  oo follow from Eq. (2.14) of Krommes and Smith and are 
indicated by the arrows on the right-hand ordinate. (The eye may perceive 
a discontinuity between the exact points at K = 5 and K--  oc, but this is an 
illusion caused by moving the point at K =  oe into K =  6; compare the 
similar situation for 7b and 7~:s at R = 50.) Clearly, the newest bound leaves 
little room for improvement. 

Although in the present case we are able to obtain the exact solution, 
the difficulty of that procedure actually provides a compelling argument for 
the bounding method. As we describe in Appendix A, it is difficult to 
obtain a precise value for the flux due to problems with statistical noise. 
Although the noise can always be reduced by using more realizations, the 
computations then become very long and expensive, even for the very 
simple, one-dimensional reference model. On the other hand, even our 
most complicated bound can be obtained readily and precisely by quite 
straightforward analytic and numerical analysis. Although it will not 
always be the case that the bounding method will be superior, it appears to 
be a viable option in a variety of problems similar to the present one. 

3. B O U N D S  ON PARTICLE T R A N S P O R T  IN A T U R B U L E N T  
P L A S M A  DUE TO S T O C H A S T I C  M A G N E T I C  FIELDS 

In the previous section, we dealt with a system where the correlation 
length Lc associated with the advecting velocity field was infinite. To be 
more realistic, we need to consider the case where the correlation length is 
finite. Because certain shortcuts are possible in the case of infinite Lc, it is 
not immediately clear how manageable the optimum theory will be in the 
more general situation. A specific example is the problem of particle 
transport due to specified stochastic magnetic fields, and we discuss 
that in this section. This problem was also considered by Krommes and 
Smith from the point of view of the optimum theory; however, they only 
considered the basic bound. 

Since the field lines are stochastic, particles stuck to the field lines also 
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move in a random fashion and there results a transport of particles, energy, 
and so forth across the field lines. (9) However, the precise nature of this 
transport is subtle and depends critically on the collisionality of the 
particles. If the particles undergo no collisions at all, their diffusion 
coefficient is related straightforwardly to that of the magnetic lines, and is 
called the collisionless result. (is) A more interesting situation arises when 
the particles are allowed to diffuse along the actual lines, but are never 
scattered by perpendicular diffusion from their original lines. Then, the 
"double diffusion ''(H) of the particles along the lines and of the lines them- 
selves leads to a transport process slower than diffusive, which means that 
the diffusion coefficient vanishes. An even very slight amount of perpen- 
dicular diffusion, however, is sufficient (1~ to restore a radial diffusion 
process for the particles, and in a wide parameter range of relevance to 
many experiments the "collisionless" result is again recovered. When the 
parallel collisionality becomes sufficiently large, other regimes and results 
are appropriate and Krommes et al. (~) have shown how these regimes 
are continuously connected in parameter space. Krommes and Smith 
considered bounds for arbitrary collisionality, (4) but since they considered 
only the basic bound, they were unable to obtain the collisionless scaling in 
the quasilinear regime of short Lo, which is of considerable experimental 
relevance. 

To illustrate the optimum techniques for finite Lo, we shall consider a 
model that is most appropriate for the collisioUess, quasilinear regime. 
Specifically, we consider the model equation (~) 

~ +  v 6u. Vf - R-1VZ f =O (29) of 

where V 2 -" 02/(3x 2 + 02/Oy 2, ~f iS the arc length along the unperturbed field 
line, (?/(?g "- (?/Oz + (x /L~)EOy (Ls is the shear length), R "-- ~L/~c~ is the 
Reynolds number, and 6u describes the stochastic field, 6 u -  v 6 b -  
2c 6u~ + f~ 6u.~. Here 6h is the dimensionless magnetic field fluctuation from 
an equilibrium configuration with good flux surfaces. We have normalized 
the density (defined as S dv f )  to n o (the density at one end of the region in 
which we will work), the perpendicular spatial coordinates x and y to L, z 
to L/b, where/~ - ( 6b2 )  1/2, the parallel velocity v to the thermal velocity 
vt, the time t to L/~, where t~ - /~vt, the particle distribution function f to 
the Maxwellian fM, and the magnetic field to the average uniform field 
strength B o in the z direction. In Eq. (29), the second term represents the 
effect of particles streaming along the unperturbed field lines and the last 
term describes the effects of dissipation, which we may think of ~1~ as 
modeling either real classical collisional diffusion or possibly the effect of 
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the E x B nonlinearities in real space. Note, in particular, that we have 
completely omitted the effects of collisions on the parallel velocity. In the 
limit of infinite Reynolds number, the model correctly describes the com- 
pletely collisionless (and nonphysical) situation, in which the particles 
never leave their original lines. In general, however, since the collision 
operator is absent, the model does not correspond precisely to any of the 
physical coUisionality regimes described above, so some of the transport 
regimes predicted by the model are nonphysical. This is not of concern, 
though, since our interests here are pedagogical. The bound we shall obtain 
in the limit of small Lc and R --, oe is valid for the important collisiontess 
situation in which both the parallel and perpendicular collisionality are 
small, although nonzero. Thus, although the model does not completely 
capture the physics of a realistic experimental situation, it is rich enough to 
display important features and difficulties of the optimum procedure 
applied to passive situations with a finite autocorrelation length. There is 
no difficulty in principle in including the effects of parallel collisionality; see 
the work of Krommes and Smith. 

As usual, the optimum question is: Determine bounds on the flux 
through a bounded region, under various rigorous constraints~ Since we 
work in the collisionless situation, it is sufficient to determine the particle 
flux Fv as a function of velocity; various physical fluxes are appropriate 
velocity moments of Fv. 

The nature of the boundary conditions we shall impose requires some 
discussion. Specifically, we concentrate on a region of overlapping magnetic 
islands, bounded by flux (KAM) surfaces which we take for simplicity of 
description to be planes lying at x = xa and x = Xb. Effectively, our model 
calculation, in which the advecting field does not vanish at x = 0 or x = L, 
corresponds to working in a subregion [0, L]  such that xa<O<~x<~ 
L < xb; this can be thought of as an "interior slice" of a larger stochastic 
system. We shall impose the boundary conditions 

n(O) = no, n(L) = 0 

However, for such a slice such rigid boundary conditions are 
inappropriate, and one is then led to question just how seriously one can 
take the resulting bounds. Fortunately, we can appeal to the discussion of 
Krommes and Smith, who argue that in the limit Lc ~ L the effects of the 
boundary conditions are localized near the edges of the slice and negligibly 
affect the global transport. 

In the following, we shall exploit an important physical assumption 
about the perturbed magnetic field--namely, that it is perpendicular to the 
unperturbed B~: 

6b~=O 
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This approximation assumes that the field compression (5(B 2) is negligible 
and, in a theory of microinstabilities, corresponds to ignoring the com- 
pressional Alfv6n wave. 

The structure of Eq. (29) is quite similar to that of the previous exam- 
ple except that here we have a three-dimensional problem and the 
"advecting velocity field" 6u depends on space as well as on time. Thus, the 
procedure we will follow is basically the same as in Section 2 except that 
here we will neglect the triplet and higher-order correlations: First, we find 
the equal-time, equal-space--i.e., one point--constraint from the "energy" 
balance. However, as before, this basic constraint does not describe the 
effects of either short autocorrelation time or length, which are important 
in physical situations. Thus, we add a two-point constraint to complete the 
variational functional. Then, we proceed in a straightforward way to obtain 
the Euler-Lagrange equation. The detailed calculation is described in 
Appendix C; the final equation for the bounding flux is 

0 = - R  -1V~ r . (x ,  x' ,  2,, 5, r)  + R [ F o ( x ,  x,  O) - F~(O) - R -1 ] 

x U(x, x', ~, 5, ~) + ~g(x, x', y, ~, ~) (30) 

where F~(x, x', ~, 5, ~) is the two-point particle flux as a function of 
velocity in the x direction, Fv(0 ) is the one-point flux integrated over x, U 
is the autocorrelation function of 6ux, and 

Also, the double bar represents integration over both x and x', and 0 
stands for (y, ~, ~) = (0, 0, 0). An interesting feature of this equation is that 
x' enters the problem as a parameter, since there is no differential operator 
with respect to x' in the equation; nevertheless, it is still an independent 
variable and the flux Fv in the second term is computed at the point x ' =  x. 

that the coefficient ~ of U in the last term is a constant. [See Also, notice 
Eq. (C14).] 

We can 
be separable 

simplify the problem by choosing the correlation function to 
and of Markovian type: 

U(x,x ' ,  p ,e ,  r) 

= v 2 exp( - I x  - x '  I/lx) e x p ( - I ~ l / l y )  exp( - I~ l / l z )  e x p ( - I r I / K )  

where the l's and K are the correlation lengths and correlation time, 
respectively. By employing separation of variables, we obtain 
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o---= ) -[-2x~+l? 2 rv(x, x')+v2[r~(x, x) 

- F ~ ( 0 ) - R  ~] exp lx 

,~ dY~ d~' Fv(2, ~') ( - i x -  x ' l ) . / :  
+R ~(K x +lvllT1) f~dxd-ff;-e--~p(--_~-_-x,j/lx) ex p (31) 

In general, we can obtain a solution Fv(0 ) parametrized by Ix, ly, !=, K, 
and R. 

For the extreme case that the perpendicular correlation lengths l~ and 
ly are very long, Eq. (31) reduces to Eq. (5.19) of Krommes and Smith 
except for the factor of v 2 and the streaming effect. The dimensionless 
bound 7 is found to be 

7 I=~';I-F(v2K) '+(Ivl, '=)-' (32) 

where 700 is the basic bound (4) for infinite K and l=: 

Rv 2 
7 ~ = R  ~ [ 1 - 2 t a n h ( T ) ] / I ~ v t a n h ( 2 ) l R v  

For the quasilinear regime R>>I, K<I1, and l=~l ,  the dimensionless 
bound behaves as 

7 ~ min( v2K, Iv] l~) 

or, after restoring the dimensions, 

Fv ~ t~2(v2/L) min(z=r l=/Ivl) 

In the static limit, this reproduces the "Rechester-Rosenbluth" estimate of 
the diffusion coefficient D in refs. 10, 11, and 16, 

D~g~21~Ivl 

and in turn the magnetic diffusion coefficient Dm: 

D m ~ ~21= 

Also, it agrees with the strong turbulence scaling (4~ 

D m ~/)L 

whenR>>l  andl=>>l. 
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The extreme limit where both lx and ly are very short is also 
interesting to explore. To do this, we treat the autocorrelation function as a 
Dirac delta function in x and y, 

u(x, x', y)= 4lxty 6(x-x ' )  ~(y) 

Rather than using Eq. (31), we go back to Eq. (30) and separate out the 
dependences of ~ and z. After some straightforward calculations it can be 
shown that in the strong turbulence regime the dimensionless bound 
s c a l e s  a s  

7 ~ const - IxlyRv 2 

and scales in the quasilinear regime as 

y-1 ~ const- (lxlyv) -1 [(Kv) 1 + lz  ~] 

For finite l~, Eq. (31) can be solved numerically. Since the solutions 
must resolve two disparate spatial scales, Ix and R 1, straightforward com- 
putational schemes access only a limited range of lx and R. For large 
Reynolds number the asymptotic solution is not readily available 

0 

c5 

o 

a-- 

O2 
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o lx 0 
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Fig .  2. B o u n d s  f o r  t h e  p r o b l e m  o f  s t o c h a s t i c  m a g n e t i c  f ie lds  f o r  t w o  p e r p e n d i c u l a r  

c o r r e l a t i o n  l e n g t h s  t x = l v = 2 a n d  5 0  a s  a f u n c t i o n  o f  t h e  p a r a l l e l  c o r r e l a t i o n  l e n g t h  lz w h e n  

K =  100  a n d  R = 5. 
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analytically; however, it is clear that a finite bound exists for infinite R. The 
reason is that a finite bound for infinite l's and R can be shown to exist, 
and the bounds decrease with lx, ly, and Iz. Figure 2 shows that the 
bounds are smaller for smaller perpendicular correlation length. 

4. C O N C L U S I O N  

In conclusion, we have considered various aspects of the theory of 
upper bounds for turbulent transport in passive advection problems. First, 
we have shown how one can generate better bounds for the reference 
model of Krommes and Smith by including more constraints. (This is, of 
course, not a new result philosophically; such improvement was already 
demonstrated in the original work by Howard. (6~ The present work simply 
adds to the repertoire of examples.) When we consider the constraint which 
includes information up to and including the triplet cross-correlation~ the 
improvement over the bound of Krommes and Smith is not substantial. 
Moreover, there is no improvement at all in the strong turbulence regime. 
When we add a constraint including fourth-order cross-correlations, the 
bounds are improved substantially in the cases of both finite and infinite 
Kubo number. Nevertheless, it is quite apparent that such higher-order 
calculations become rapidly substantially involved, even in the simple one- 
dimensional reference model where one has the freedom to choose 
appropriate statistics for the correlation of the advecting velocity field u. 
Thus, the utility of bounds involving the fourth-order moments for com- 
plicated practical self-consistent situations is unclear. However, in some 
problems where accuracy can be sacrificed in favor of crude estimates, the 
optimum theory with one or two constraints which recognize the effects of 
finite correlation time is a promising candidate for the prediction of the 
steady-state flux. 

Second, we showed how to solve numerically the reference model for 
finite Kubo number. This problem is not entirely trivial, due to statistical 
noise. For the present problem, refined calculations of the exact solution 
are quite long and expensive relative to the computation of even the most 
complicated bound. 

Finally, we applied the optimum theory to the problem of transport in 
a collisionless plasma due to stochastic magnetic fields. In doing this, we 
encountered no untoward difficulty in proceeding even when the velocity 
field depends on space as well as on time. We recovered already known 
scaling laws of the diffusion coefficient in both the quasilinear regime and 
the strong turbulence regime when the perpendicular correlation length is 
infinite. Also, we could generate numerically a family of curves of the 
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bounds as a function of the correlation lengths, correlation time, and the 
Reynolds number. 

In closing, we point out that to our knowledge all of the applications 
thus far have been to inhomogeneous problems. Recently, Kraichnan has 
argued (17~ that such methods can be extended to homogeneous problems as 
well, and to lower as well as to upper bounds. This raises the exciting 
possibility of rigorous bounds on the Kolmogorov constant, for example, 
and suggests that the bounding theory is a fruitful area for further research. 

A P P E N D I X  A. N U M E R I C A L  S O L U T I O N  OF THE R E F E R E N C E  
M O D E L  

Here we describe direct numerical solutions of the generalized 
reference model (1), together with the boundary conditions 

T(O) = 1, r(1) = 0  

The general procedure is as follows. First, we choose an arbitrary initial 
condition T(x, 0), which we shall take to be the laminar profile 

rl,m(X) = 1 - x 

Next, we integrate many realizations sufficiently long that the low-order 
statistics such as ( T )  become stationary. Finally, we compute the 
advective contribution F to the flux by averaging over the realizations. As 
Krommes and Smith discussed, F may be obtained from the gradient at 
either wall by subtracting off the classical part R 1: 

F =  - R - I [ ( T )  ' (wall)+ 1] 

The random field u(t) is assumed to be a stationary, centered, Gauss- 
Markov process, which is thus fully specified by its autocorrelation function 

U(z) - (6u(z)  6u(O)) = exp( - ]z[/K) (A1) 

Here K is the Kubo number and plays the role of the autocorrelation time 
%c. To obtain realizations of u(t), we generate numerically an Ornstein- 
Uhlenbeck process (see, e.g., ref. 18), which obeys 

du 
dt + vu = a(t) (A2) 

where v = ra~l= K -1  and a(t) is Gaussian white noise. The strength A of a, 
as in 

( 6a(T) 6a(z') ) = A (~(*c --'c') 
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can be determined from the result 

A )  , v~,+t,]) (A3a) U(t , t ' )= ~v (e-~i' , l _ e  

( A )  vl,-,'l ( t , t~>rac=V-1) (A3b) e ; 

by comparing Eq. (A3b) with Eq. (A1), we find A = 2v. However, we never 
need to generate a white noise process explicitly, since in a finite-difference 
scheme only the time integral of a enters. That is, from Eq. (A2) 

u(t + St) = e-~ a' u(t) + Au(t) (A4) 

where 

Au(t) =~t['+~' dt' e-~('+~'-")a(t ') 

The increment Au(t) is a centered Gaussian since a is; it is also independent 
of Au in any other time interval. Thus, we require just the variance of Au, 
which can be obtained from Eq. (A3a) by replacing both t and t' by At" 

a 2 -  ( A u ( t ) 2 ) = l _ e  2~, 

[In the short-time limit this reduces correctly to the familiar result of 
velocity-space diffusion, r ~ 2v At (v At ~ 1).] 

Thus, the final algorithm for u(t) is Eq. (A4), with 

Au( t ) = ~7( 0 

V(t) being a normal random variable with zero mean and unit variance. 
Computer routines which generate such numbers are readily available. A 
typical realization of u(t) is shown in Fig. 3. The circles indicate the points 
computed explicitly by the previous algorithm; the solid line is generated 
by quasicubic Hermite interpolation (which allows a possibly discon- 
tinuous second derivative) with three segments between each circle. The 
mean value of Z = 5000 realizations is also shown as the dotted line. In 
Fig. 4 we demonstrate that the generated realizations have the proper auto- 
correlation function. The horizontal dotted lines show the first few 
e-foldings e n (n = 1, 2, 3, 4); the exact solution e x p ( - z / K )  is the diagonal 
dotted line. For Z =  1000 one sees that the result is good through about 
two e-foldings, after which statistical noise sets in; for Z =  5000 (not 
shown) the result is good through about three e-foldings. 
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Fig. 3. A typical realization of the Ornstein Uhlenbeck process u(t) for K =  3. 
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We relied on a commercial integration package from the International 
Mathematical Subroutine Library (IMSL) to integrate Eq. (1) forward in 
time for each realization u, in order to maintain most simply careful con- 
trol of the global integration error. In space, the solutions exhibit boundary 
layers of width R-1 at the walls. (4) Thus, we employed a nonuniform mesh, 
with B points spaced logarithmically within each boundary layer and B 
more spaced uniformly between the edge of the boundary layer and the 
center. In other words, there were 4B mesh points including the walls. Even 
B = 2 appeared to be adequate for most calculations; however, for the runs 
with Z>~ 1000 we used B = 3. Probably a small improvement in accuracy 
would result from a larger B. However, the integration scheme was fourth 
order in the average mesh spacing, and because the runs with large Z were 
expensive and are used only to verify that the computed bounds indeed lie 
above the exact solution, it was not deemed important to make more 
refined runs. 

A typical result for the flux (averaged over all realizations) is shown in 
Fig. 5 as a function of time. An initial transient period is evident during 
which the mean profile < T> evolves from its initial laminar form (with no 
advective flux) to its final steady-state value. Curves L and R represent the 
flux computed from the slopes at the left- and right-hand walls, respec- 

O . . . .  I . . . .  I . . . .  I . . . .  I 

I F---~ d 

c5 

-7111117.7.1 ~ = o ~ e 7 , o o 2 3  (R,K) = 100 ,30 )  i == O0277~-02.72• Z=IO00, a &t  = 0 2 0 0 . 6 0  , 
( ~  to l ,B = (I OOe-043 M 

0.0 5.0 10.0 15.0 20.0 25.0 

L 
Fig. 5. Numerical solution for F(t) at K =  3, computed with Z = ]000 from the slope of < T> 
at  the  left wall  (L),  the  r igh t  wall  (R),  a n d  the  m e a n  M of  L a n d  R. The  t ime ave rages  of  the  

last  t w o - t h i r d s  of  the t ime series a re  s h o w n  as the sol id h o r i z o n t a l  lines. 
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tively. Although those values should be equal theoretically by symmetry 
and should be constant in the long-time limit, they differ and fluctuate in 
time because of statistical noise due to the finite number of realizations. 
Curve M is the average of curves L and R and exhibits reduced statistical 
fluctuations. The total integration time was determined by trial and error. 
It was intended to be at least three times the transient period; that, 
typically, was several autocorrelation times. The final values for the flux 
were determined from the mean of the time series of curve M during the 
final two-thirds of the time integration and are indicated by the solid 
horizontal lines. The results of several such runs are plotted for R = 10 in 
Fig. 1 as the solid circles, with error bars determined by the sample stan- 
dard deviations from the means. There are points with Z = 1000 for K =  1, 
K- -3 ,  and K =  5. Each of these runs took about 1 h. of CPU time on the 
CRAY-2. (This time could have been reduced significantly by hand coding 
the time integration instead of relying on the IMSL routine; however, we 
opted for reliability and significantly reduced debugging time.) The point at 
K = 3  for Z =  1000, with F=0.272_+0.013, is almost overlaid with the 
result of a run for Z=5000 ,  which predicted F = 0 . 2 7 7 + 0 . 0 0 6  (and 
L ~ R ~ M)-- in  accord with the prediction of fluctuation theory that the 
errors scale with Z -~/2. In Fig. 6 we show the mean profile at the final 
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Fig. 6. For  Z = 1000, the m ean  profile at the final t ime (solid line) and  a typical real izat ion 
(curved dot ted line). The  crosses indicate the spatial  mesh.  See text for fur ther  discussion.  
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integration time (solid line) and at the next-to-last time (dashed line, 
almost obscured by the solid line). The diagonal dotted line is the laminar 
profile. The curved dotted line shows a typical realization of the profile in 
the statistically steady state (this curve fluctuates in time around the 
laminar profile); the crosses indicate the mesh points. The horizontal and 
vertical dotted lines are intended tO display any deviation of symmetry 
around the center. An insignificant deviation is evident for Z =  1000; for 
Z =  5000 (not shown), such a deviation is not visible at all. 

A P P E N D I X  B. THE  F U N C T I O N A L  D E R I V A T I V E  ON B O U N D E D  
D O M A I N S  

Because we work on a bounded domain in x, the final form of the 
Euler-Lagrange equations depends on whether one works on the open 
interval (0, 1) or on the closed interval [-0, 1]. In particular, when one 
works on [0, 1 ], the functional derivative gives rise to delta functions on 
the boundaries, which may appear difficult to deal with. Thus, we here 
discuss this issue in more detail. 

Consider the functional 

where f ( x )  vanishes at x = 0 a n d  x = 1. The functional derivative becomes 

~ f~ 2) 1__ 0 6f(x) = - d 2 f " ( 2 ) 5 ( x - Y ) + f ' ( 2 ) 5 ( x -  

= - [H(x)  - H(x - 1)] f " ( x )  - f ' ( x ) [ b ( x )  - 6(x - 1 )] 

= -f~_ (x) 

where we have introduced the Heaviside functon H(x) and defined the 
bounded function f +  (x) as 

f+(x )  "- [ H ( x ) - H ( x -  1)] f ( x )  

Thus, if we work on (0, 1), the delta functions do not appear explicitly. 
As a second example, consider the functional 

~ { f }  = d~ 2(~) f"( .~)  
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The functional derivative is 

6 f ( x ) - J o  d ~ ; / ' ( ~ ) 6 ( x - Y c ) + 2 ( s  - 2'(s 6 ( x -  s 
x = O  ) 2 = 0  

= [H(x) - H(x - 1)] 2"(x) + 22'(x)[6(x) - 6 ( x -  1)] 

+ , ~ ( x ) [ 6 ' ( x )  - 6 ' ( x  - 1)] 

= ~.'+ ( x )  

The functionals ~- and ~ are two generic types of the functional N in 
Section 2. Hence, it is clear that the resulting Euler-Lagrange equation in 
Section 2 is defined on the open interval (0, 1). 

A P P E N D I X  C. O P T I M U M  E Q U A T I O N  FOR T R A N S P O R T  D U E  
TO S T O C H A S T I C  M A G N E T I C  FIELDS 

Here we derive a variational principle and associated Euler-Lagrange 
equation for the problem of collisionless particle transport due to specified 
stochastic magnetic fields, using a constraint which includes two-point 
correlations in both space and time. We begin with the model equation 
derived in Section 3: 

~t+ v ~ +  c~u. V f  - R - 1 V ~  f =O ( e l )  

where all symbols have been defined in the text. First, we ensemble average 
Eq. (C1) assuming that the turbulence is statistically stationary in time and 
homogeneous in the y and z directions. We obtain the continuity equation 

d (6ux (Sf) -- R 1 d2 
~xx ~ x  2 ( f ) = O  (C2) 

Upon integrating once over x, we are led to 

d 
-~x ( f ) ( x )  = g [ r v ( x ,  x ,  o )  - F~(O)  - R -1  ] (c3) 

where we have introduced the two fluxes 

and 
Fo(x,x', y -  y ' , z - z ' , t - t ' )  - (6f(x ,  y , z , t )  6ux(x', y ' , z ' , t ' ) )  

Y~(y, z, t) - dx F~(x, x, y, z, t) 
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For convenience, when no ambiguity arises, we write 0 as a shorthand 
for (y,z, t )=  (0, 0, 0), as in ff~(0) in Eq. (C3). The equation for the 
fluctuation is 

-~+v 6f + f u x - ~ x ( f ) + V . ( 6 u f f - ( 6 u 6 f ) ) - R - I V 2  6f =O (C4) 

where V. 6u = 0 was used. 
We now proceed to derive the basic constraint. Upon multiplying 

Eq. (C4) by 6f at the same point in space and time, we obtain 

F~(x,x,o) d ( f ) + d  ( �89 c~f)=O (C5) 
dx 

Upon using Eq. (C3) to eliminate d( f ) /dx ,  integrating over x, and 
rearranging, we are led to the basic constraint 

where 

P~(0) = R AV~ + R - '  ((V• af) 2) 

3 F o ( x )  - F~(x, x, O) - P~(O) 

(C6) 

Thus, the basic variational principle is 

minimize ~=7~ R2AF~+( (V•  subjectto /=~(0)=Tv (C7) 
Pv(0) 2 

To refine the bounds by including the coherence properties of the 
advecting stochastic field, we must use a two-point constraint. Krommes 
and Smith showed how to do this when the advecting field depended only 
on time, but here we wish to consider space dependence as well. The 
procedure is as follows. First, we multiply Eq. (C4) by 6Ux(X', y', z', t') and 
ensemble average: 

0 =  +v Fo(x ,x ' , y ,~ ,v )+U(x ,x ' , y ,  5, z ) - ~ x ( f ) ( x )  

+ V .3- (x ,x ' ,  fi, 5, ~ ) - R - l V ~  Fo(x,x', 2,5, r) (C8) 

where y, ~, and z are the difference variables y - y -  y ' ,  ~ - z -  z ' ,  and 
z - t - t', U is t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o f  ux ,  a n d  ~'-  is  a t r i p l e t  c r o s s -  

c o r r e l a t i o n  function: 

U(x, x', p, ~, r) - (6uAx, y, z, t) &x(X', y', z', t')) 

~--(x, x', p, if, "r) - (cSu(x, y, z, t) 6f(x, y, z, t) 6Ux(X', y', z', t')) 
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After we integrate over x, x', and y, we immediately obtain the two-point 
constraint 

0=c(~,~)- d;, axdx' ~ + V ~ z -  ~ Vo(x,x',;,,~,~) 
- - o o  

- j_  ~ dy dx' U(O, x', y, ~, ~) (C9) 

where we used the divergence-free property of 6u to write 

d 
U(x, x', ~, ~, r)~xx ( f } ( x ) =  V. [<6u 6u" >( f )  ] 

and where the boundary conditions were used to obtain the last term of 
Eq. (C9). (Notice that the effect of magnetic shear is lost under the 
integration.) 

Now, we can proceed to construct the functional which is to be 
minimized: 

R ~ Jv~ + < ( V  a/)2> 

+ (clo) 

In principle, the quantities in this functional should be integrated over v as 
well. (See the discussion by Krommes and Smith.) However, this is an issue 
only when collisions are taken into account. Here, since we consider the 
collisionless approximation, the velocity variable enters only as a 
parameter and we can omit the velocity integration. 

The functional derivative of Eq. (46) with respect to 6f leads to the 
Euler-Lagrange equation. After using Eqs. (39) and (45), we obtain 

O= --R-'V2_af +6Ux ( f>+A,6ux+ dgds163 
- - o o  

x + -~ f_ df~ d~6ux(~ ,y - .~ , z -~ . , t - f )  (Cll)  

where 

' \ 2 R )  2~ 



1136 Kim and Krommes 

In the same manner as in Section 2, Am can be related to A 0 by multiplying 
6f  at the same point, ensemble averaging, and integrating over x: 

A I =  - 7 ~  ~ d~deAo( i , f )  d x U ( O , x , y , z , ~ )  
o O  - -  c~3 

By multiplying Eq. ( e l l )  by 6ux(x', y', z', t') and averaging, one can 
write the Euler-Lagrange equation as an equation for the flux itself: 

d 
0 = - R  -1V~F~(x,  x', •, 5, z) + U(x, x', y, 5, z) -~x ( f )  

('§ - ~ v y  z O ( x ' , 5 , ~ ) - ~ r  (c12) 

where ~b is the convolution of Ao and U: 

O(x, 5, z) - dg de A(2, i) dp dff U(x, 
o o  

(c13) 

This leads to 

~5+~ r  

O(x, ~, ~)= b(x, 5 - w )  

After we use the constraint (C9), ~b(0) is found from the integration of 
Eq. (C12) to be 

~(0) = -Tv dy U(~, L z) f df  fly(f, ~, ~) (C14) 
o o  

where we defined double-barred quantities as 

f - -  dx dx' f ( x ,  x') 

Notice that O is not a function of :~. In order to deduce the relation 
between ~b and F~, we integrate Eq. (C12) over x, x', and y. Since it is 
assumed that the 3~ integrations of F~ and U are finite, and since the 
integral of ~b over 3~ is infinite, in order for Edl. (C12) to be satisfied we 
must let the third term on the right-hand side of Eq. (C12) vanish: 
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T h e  a b o v e  suggests  tha t  F~, and  the  c o r r e l a t i o n  func t i on  U h a v e  the s a m e  

f o r m  as a f u n c t i o n  of  ~ and  z. F ina l ly ,  af ter  we subs t i tu te  for ~b(0), we have  

O=-R-~V~C, (x , x ' , y ,~ , z )+R[r~(x , x ,O) -Fo(O)  R -1] 

x g(x, x', y, ~, r) + dy 8(y, ~, ~) 
c o  

x + V ~ z  d ~ F v ( f , Y , v )  U ( x , x ' , y ,  2, r) (C15)  
- - o O  

This  e q u a t i o n  is d iscussed  fu r the r  in Sec t ion  3. 
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